网站首页 网站地图
网站首页 > 说说文案 > 华罗庚名言数形结合百般好精选好句35句

华罗庚名言数形结合百般好精选好句35句

时间:2024-11-22 22:56:48

1、在数学中,我们常常需要根据研究对象性质的差异.分各种不同情况予以考察,这是一种重要数学思想方法和重要的解题策略,引起分类讨论的因素较多,归纳起来主要有以下几个方面:(1)由数学概念、性质、定理、公式的限制条件引起的讨论;(2)由数学变形所需要的限制条件所引起的分类讨论;(3)由于图形的不确定性引起的讨论;(4)由于题目含有字母而引起的讨论.

2、数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休。

3、深圳精英数学团队为你解答分享:

4、函数与方程的思想

5、著名数学家华罗庚说过,有关数形结合的话:数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休。

6、用变量和函数来思考问题的方法就是函数思想,函数思想是函数概念、图象和性质等知识更高层次的提炼和概括,是在知识和方法反复学习中抽象出的带有观念的指导方法.

7、数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案。

8、整体思想5、类比思想把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。

9、二、数形结合的思想

10、数形结合

11、例如:设甲数为a,乙数为b,用代数式表示:(1)甲乙两数的和的2倍:2(a+b)(2)甲数的2倍与乙数的5倍差:2a-5b

12、华罗庚数形结合名言怎么说的?华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”。

13、数形结合思想

14、是数学中最重要的.,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。初高中阶段有很多题都涉及到数形结合,比如说解题通过作几何图形标上数据,借助于函数图象等等都是数形给的体现。

15、这八句话就是指:数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休。

16、三个是凡是较有成就的科学工作者,毫无例外地都是利用时间的能手,也都是决心大量时

17、初中数学涉及到的思想方法很多,在此仅仅谈谈常见的八种思想方法:

18、分类讨论的解题步骤一般是:(1)确定讨论的对象以及被讨论对象的全体;(2)合理分类,统一标准,做到既无遗漏又无重复;(3)逐步讨论,分级进行;(4)归纳总结作出整个题目的结论.

19、数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。

20、数学八种思维方法:代数思想、数形结合、转化思想、对应思想方法、假设思想方法、比较思想方法、符号化思想方法、极限思想方法。

21、二个是独立思考能力,又打从事科学研究或其他任何工作,都是十分必要的。在历史上,任何科学上的重大发明创造,都是由发明者充分发挥了这种独创精神。

22、“数形结合”是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括.数学教材中下列内容体现了这种思想。

23、一、常用的数学思想(数学中的四大思想)

24、深刻理解函数的图象和性质是应用函数思想解题的基础,运用方程思想解题可归纳为三个步骤:①将所面临的问题转化为方程问题;②解这个方程或讨论这个方程,得出相关的结论;③将所得出的结论再返回到原问题中去.

25、转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。

26、分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。

27、这是基本的数学思想之一.在代数第一册第二章“代数初步知识”中,主要体现了这种思想。

28、华罗关于数形结合的名言是,数无形时少直觉,形少数时难入微,数与形,本是相倚,焉能分作两边飞。一个是科字是实事求是的学问,来不得半点虚假。

29、分类讨论思想

30、等价转化思想

31、一、用字母表示数的思想

32、等价转化是指同一命题的等价形式.可以通过变量问题的条件和结论,或通过适当的代换转化问题的形式,或利用互为逆否命题的等价关系来实现.

33、数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透。例如,有时通过画线段图的手段去寻求解决问题的方法,也可视为数形结合思想的运用。

34、在中学数学里,我们不可能把“数”和“形”完全孤立地割裂开,也就是说,代数问题可以几何化,几何问题也可以代数化,“数”和“形”在一定条件下可以相互转化、相互渗透.

35、常用的转化策略有:已知与未知的转化;正向与反向的转化;数与形的转化;一般于特殊的转化;复杂与简单的转化.